

Enhanced High Acid Corrosion Control with Innovative Chemical Additive

A Presentation by: Mr. James Ondyak

Authors: Dr.Mahesh Subramaniyam, Mr. James Ondyak, Mr. James Noland, Mr. P. N. Ramaswamy and Mr. Parag Shah.

Mr. James Ondyak

Present Affiliation	Dorf Ketal, Executive Vice President Marketing & Business Development	
Academic Qualifications	MS Chemical Engineering, Illinois Institute of Technology MBA Harvard Business School	
Areas of Specialization	New Technology Introductions Business Development	
Achievements / Awards	Dorf Ketal Executive Board Member Previous Experience: • Division President Nalco • Corporate VP of Marketing for all Nalco • Board Member of Nalco-Saudi • General Manager European Business Unit • District Manager of the Year • District Representative of the Year	

A Responsible Care[®] Company DORF KETAL

Conclusion

Case Study

- High TAN Opportunity Crudes
- Innovation Summary
- Risk of Fouling with Conventional Chemical Additives
- Key Technology Differentiator and Test Results
- Operational Benefits of "P-Efficient" HTCI

Old Ways vs. New Ways

phone circa 1979

phone circa 2014

A Responsible Care[®] Company

High TAN Opportunity Crudes

Naphthenic Acids = High Temp Corrosion = Corrosion \$ Control

CORROSION MITIGATION

METALLURGY UPGRADE (HIGH CAPITAL COST) CHEMICAL PROGRAM (LOW CAPITAL COST)

Crude	Origin	API Gravity °API	Total Sulfur wt %	TAN mg KOH/g
Doba	Chad	21.1	0.12	5.18
Merey16	Venezuela	17.9	2.15	1.46
Dar	Sudan	24.5	0.11	4.1
Albacora	Brazil	19.4	0.55	2.37

PRODUCTION ESTIMATES

1.2 MM BPD in 2000 to 4.5 MM BPD in 2020

DORF

- Inefficient phosphorus delivery due to low "P-efficiency"
- Low "P-efficiency": Potential fouling problem
- Innovative TANscient[™] LP additive with improved "P-efficiency"
- Requires 50% to 80% less phosphorus for equivalent protection
- Superior TANscient[™] LP additive: new benchmark for refinery HTCI

Risk of Fouling from Conventional HTCI

Exchanger Fouling from Dislodged Scale

Column Fouling from Residual Product Coking from Iron Pick Up due to Acidic Nature

DORF

Catalyst Impairment and Fouling, Reduced Run Length

Risk of Fouling from Conventional HTCI

CONVENTIONAL PHOSPHATE ESTER CHEMISTRY	INNOVATIVE TANscient™ LP CHEMISTRY
Traditional phosphate esters	Breakthrough additive
(mixed mono-& di-alkyl esters) with 7-8% P	mainly tri-esters with ≤ 1.2% P
Decompose to phosphoric acid below 290 °C	Low corrosivity
Low "P-efficiency"	Enhanced "P-Efficiency"
Needs reactive sulfur to generate iron sulfide layer	Effective without reactive sulfur
Poor iron polyphosphate stability	Stable iron polyphosphate film

A Responsible Care[®] Company DORF KETAL

Key Technology Differentiator

TEST CONTAINS	S 1% OF EACH	PRODUCT AT 290 °C
----------------------	--------------	-------------------

Chemistry	Phosphorus Content (%)	% P Converted to Precipitate	Photo	Observation
Innovative	TANscient™	is "P-efficient"	TANscient" LP	No adherence to
TANscient LP	1.2	4.2		the wall
Conventional			Phosphate - Cotor	Plackish deposit
phosphate ester additive	7.5	97.3		Blackish deposit adhered to the wall
Low phosphorus thio-phosphate			Thio- Phosphate exter	Blackish deposit
ester additive	2	74.4		adhered to the wall

Cleanliness of the flask indicates higher soluble phosphorus and better thermal stability

Differences in P Required for Equal Corrosion Rates

UNTREATED CORROSION RATE = 463 MPY, STATIC TEST

Sample	D130 (Distilled Residue)
Nap Acid	Commercial
Tan	1.3 mg KOH/g
Тетр	290 ° C (Passivation & Test)
Time (Passivation)	1 hr 30 min
Time (Test)	. 4 hrs
Purging	Nitrogen (110 ml/min)

Operational Benefits of "P-Efficient" TANscient™ LP HTCI

- Less risk of fouling and deposits
- More effective at all critical temperatures, down to 200 °C.
- No slipstream cooling required for chemical injection
- Less complex quill design required for low acidity HTCI
- Effective passivation at far lower dosages
- More flexibility to respond to TAN upsets

Operational Benefits of "P-Efficient" TANscientTM LP HTCI

PROBE - Mass Loss

- Atmospheric residue with TAN 0.7-1.6 mg KOH/g
- Corrosion-susceptible areas: Vacuum furnace inlet, furnace tubes and furnace outlet
- TANscient[™] LP additive reduced the rate of mass loss
- Benefit: Flexibility in processing high TAN crude

Conclusions

- Conventional inhibitors have serious drawbacks and limitations
- Current HTCI users now have a much better alternative
- This new corrosion control chemistry is easy to substitute without risk
- Advantages are easily demonstrated in the lab and in the field
- No chemical supplier "black box"

We have a strong IP position and we can fully explain the chemistry under NDA.

Discounted High Acid Crudes are Increasingly Available

CAPTURE THAT DISCOUNT WITH TANscient™ LP HTCI CHEMISTRY!

DORF

Thank You